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The dynamics of complex systems, such as ecosystems, financial markets
and the human brain, emerge from the interactions of numerous com-
ponents. We often lack the knowledge to build reliable models for the
behaviour of such network systems. This makes it difficult to predict poten-
tial instabilities. We show that one could use the natural fluctuations in
multivariate time series to reveal network regions with particularly slow
dynamics. The multidimensional slowness points to the direction of minimal
resilience, in the sense that simultaneous perturbations on this set of nodes
will take longest to recover. We compare an autocorrelation-based method
with a variance-based method for different time-series lengths, data resol-
ution and different noise regimes. We show that the autocorrelation-based
method is less robust for short time series or time series with a low resol-
ution but more robust for varying noise levels. This novel approach may
help to identify unstable regions of multivariate systems or to distinguish
safe from unsafe perturbations.
1. Introduction
Many complex systems are managed or structured such that they are relatively
stable, in the sense that they can maintain the same functions. Examples include
the human body [1], financial systems [2], ecosystems or social systems [3]. All
of these systems can be represented as networks [4] with multiple interacting
entities, such as organs, banks or companies, species and abiotic factors or indi-
vidual human beings [5]. All network entities are continuously disturbed by
external events that bring the full system somewhat out of balance. For instance,
climatic extremes, diseases or human interference may result in a temporary
increase or decrease in abundance of one or more species [6]. Environmental
fluctuations and disturbances affect different species in different ways [7,8],
and particular compounded perturbations may have much larger impacts
than when such perturbations occur in isolation [9]. It is intuitively straightfor-
ward that for each system there is a particular type of perturbation (in the sense
that a certain set of network entities is disturbed simultaneously in a particular
way) to which the system is the most sensitive [10]. This raises the question of
whether we might be able to deduce such ‘weak spots’ in the myriad of possible
combinations of pressures on the system.

In this study, we are thus interested in finding the particular combinations of
pressures fromwhich a systemwill recover the slowest. In other words, we aim to
identify network regions with low resilience, where resilience is defined as the
rate at which a system recovers after a perturbation, also often called engineering
resilience [11]. The underlying configuration of the network and the interactions
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Figure 1. Using autocorrelation in a two-dimensional system to predict directions of fast and slow recovery. (a) Stability landscape of two interacting species (X and Y),
showing that the speed of recovery depends on the direction of a disturbance. The speed is indicated by the slope of the stability landscape. (b) Autocorrelation along
different directions in the system’s phase space. The scatterplot shows part of the time series. Red lines indicate the slowest direction (dashed line), i.e. with highest
autocorrelation, and the fastest direction (solid line), i.e. with lowest autocorrelation. The coloured circle indicates the autocorrelation in every direction. (c–d ) Projected
time series on the slowest (c) and the fastest (d ) direction. (Online version in colour.)
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between elements is often unknown, making it hard to rely on
models to simulate dynamics and find such weak spots in the
system. Another approach is to use observed time series to
search for combinations of variables with low resilience. If
we assume a homogeneous network where all nodes and con-
nections are similar, methods exist that may find universal
patterns of resilience [12]. However, for heterogeneous net-
works, other approaches are required. One line of research
has looked at the rate of recovery from perturbations as an indi-
cator of resilience. For example, if a system is intrinsically slow,
this should be reflected in the observed time series by a high
autocorrelation [13–15] and a high variance [16,17]. While
most literature on resilience indicators (also often called ‘early
warning signals’) focuses on univariate data, recently the first
steps towards resilience indicators based on multivariate time
series (i.e. of network-type systems) have been taken.
Suggested metrics to indicate the overall resilience of the
system include the autocorrelation of the projection of data
on the first principal component (PC) using principal com-
ponent analysis (PCA) [14], combinations of cross-correlations
between system elements and variance of individual elements
[18], mean autocorrelation and variance [19] and the maximum
value of the covariance matrix [20] . However, so far, these
studies have mostly focused on finding a scalar indicator of
resilience, and not so much on identifying the combination of
variables involved.

Here, we propose that one could use observed natural
fluctuations to map the multivariate pattern of indicators of
slowness such as temporal autocorrelation (figure 1b). The
basic idea is most easily illustrated from a stability landscape
illustration of a hypothetical two-dimensional system describing
thedynamics of two interacting speciesX andY (figure 1a). From
the shape of the stability landscape, it is intuitively clear that a
disturbance resulting in an increase or decrease of both species
X andYwill return to equilibrium relatively quickly. By contrast,
the systemwill recover muchmore slowly from a disturbance of
the same strength resulting in an increase in X combined with a
decrease in Y, or vice versa. Now, if we assume this system to be
continuously perturbed in random directions, we can use the
observed time series of X and Y to find the direction of slowest
recovery simply by computing temporal autocorrelation or
variance projected on all possible axes (figure 1b–d). In the
two-dimensional case finding this slow direction can be done
by brute computational force.However, as the numberof dimen-
sions increases it becomes impossible to scan all directions. We
will show how novel ways of using known tools based on
autocorrelation or variance allow scanning for the direction of
lowest resilience even in highly complex networks.

We assess the suggested methods by applying them to
synthetic data where we know the underlying mechanisms.
Since in multivariate systems the link between a high
autocorrelation or variance and a slow recovery is not as
straightforward as in univariate systems, we also assess what
we can expect from these resilience indicators in our multi-
variate examples. We pick three example models with
varying degrees of complexity that allow us to compare the
predictions with the actual direction of slowest recovery. Fur-
thermore, we evaluate the robustness of both autocorrelation-
and variance-based approaches for the length and resolution
of the data and for different noise regimes. We introduce a
test to assess if a particular real-world multivariate time
series is suitable for the proposed analyses and discuss
which method one should preferably use in which case.
2. Methods
2.1. Finding the direction of slow recovery
In order to find the slowest direction in amultivariate time series,we
detect thedirectionof highest autocorrelationbyusing theMin/Max
autocorrelation factors (MAF) analysis [21],whichwe explain below.
Additionally,wedetect thedirection of highest variance byusing the
well-known PCA. We use simulated multivariate time series with
equal temporal spacing between data points to investigate the
general applicability and performance of both methods.

The MAF algorithm detects the direction of the highest
variance of the first difference (difference between consecutive
time points) of the time series. In a time series with high auto-
correlation, the similarity between consecutive time points is
high, which relates to a low variance in the first difference.
Similarly, low autocorrelation relates to high variance in the
first difference. The MAF algorithm detects the direction of
maximum autocorrelation in a four-step process:

1. We transform the data to ensure that they have an identity
matrix as the covariance matrix. In line with [22], we use an
‘SDS transform’ (spectral decomposition sphering):

XSDS ¼ X �U �D�(1=2) �U0,

whereX is the original dataset,XSDS is the transformeddata,U is
the eigenvectormatrix of the covariancematrix of thedata andD
is a diagonal matrix with eigenvalues of the covariance matrix.

2. We calculate the first differences ofXSDS, resulting in [XSDS(t)−
XSDS(t + 1)].
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3. We calculate the eigenvector matrix V and the eigenvalues E
of the covariance matrix of [XSDS(t)−XSDS(t + 1)]. These
eigenvalues can be used to determine how different the
variances of the different eigenvectors are.

4. We calculate the MAFs:

WMAF ¼ U �D�(1=2) �U 0 �V:

More details about the procedure can be found in [21–23]. The
output of the MAF analysis is a set of components called the
MAFs, which are ordered from high to low autocorrelation.
These can be compared with the PCs of a PCA, which are ordered
from high to low variance. So like the PCs in PCA, we can project
the data on the MAFs or summarize the data using only a number
of MAFs to reduce the dimensionality. In contrast to PCs, the
MAFs do not have to be orthogonal to each other. Since a high
autocorrelation is linked to low resilience, the MAFs order the
directions of the system from low to high resilience.

To be able to compare the MAFs, we use the MAF eigenvalues
(E) belonging to the eigenvectors of the covariance matrix of
[XSDS(t)−XSDS(t + 1)] that we calculated in step 3. Similar to the
explained variance in PCA, the MAF eigenvalues provide a
weight to the autocorrelations projected on each MAF. In contrast
to PCA, a MAF with a low eigenvalue indicates that the autocorre-
lation of the projected time series is higher than all other directions,
whereas a high eigenvalue indicates a low autocorrelation.
2.2. Models
To test and compare the potential methods to detect the direction
of lowest resilience based on multivariate time series, we apply
them to time series generated by three different models. The
models have a deterministic part and a stochastic part. For the sto-
chastic models, we use an Euler–Maruyama integration. For the
deterministic models an Euler integration is used. To generate
the time series, we used Grind for MATLAB [24].
2.2.1. Metapopulation model
First, as an example of a gradient non-reactive system, we use a
classical ecological model that is known for having alternative
stable states (a bistable model) [25]. Alternative stable states are
multiple states that are stable under the exact same parameter set-
tings. The model describes the abundance of a logistically growing
species that is being harvested following a Holling’s type III func-
tional response. The modelled species could for instance represent
a plant that competes for space and is being grazed by herbivores.
The grazing efficiency of the herbivores may increase with plant
abundance until a certain biomass is reached, at which point the
herbivores become saturated. For this study, we simulate a meta-
population with three patches and assume that the modelled
species can migrate between the patches,

dNi¼ Ni 1�Ni

Ki

� �
� ciN2

i

1þN2
i
þ
X
j=i

dij(Nj�Ni)

2
4

3
5dtþsNidWi, (2:1)

where Ni is the abundance of the species in location i, Ki is the car-
rying capacity at location i, ci is the maximum harvesting rate and
dij is a symmetric matrix describing migration between patch i and
j. Finally, each patch is affected by noise, with dWi representing a
Wiener process with mean 0 and variance σ that is uncorrelated
for the different variables. Default parameter settings are: K1 =
10, K2 = 13, K3 = 8, c1 = 3, c2 = 2, c3 = 2.3, d21 = d12 = 0.2, d31 = d13 =
d32 = d23 = 0.08 and sNi ¼0:02. A time step of 0.01 was used
for integration. The parameters were chosen such that some
asymmetries occur in the resilience in different directions.

It should be noted that this model is extremely simplified and
the parameters are not based on observations. This first model is
chosen because it is well known and can easily be used for
visualizations and for explaining how to interpret the MAF results.

2.2.2. Sahara model
Second, as an example of a non-gradient non-reactive
system, we use a simple climate model describing vegetation–
precipitation interactions in four regions of the Sahara. This
model has been used to explain the shift from a vegetated state
to a desert state in the Sahara region. The model was developed
in [26] and made spatially explicit in [27]. The model describes
the growth of the vegetation as a function of the current veg-
etation and the equilibrium vegetation cover, which depends
on the precipitation in that location,

dVi ¼ V�(Pi)� Vi

t

� �
dtþ sdWi, (2:2)

where V is the vegetation cover, V*(Pi) is the equilibrium veg-
etation cover as a function of the precipitation at location i and
τ is the characteristic time scale.

The vegetation equilibrium is described by

V�(Pi) ¼ 1:03� 1:03
1þ a( Pi � P1ð Þ=exp(gd)) , (2:3)

where δ stands for the growing degree days (−900 K). The depen-
dency of vegetation on temperature in the Sahara is, however,
rather unimportant compared with rainfall. The parameter γ
determines how steep the V*(Pi) curve is, i.e. the sensitivity to rain-
fall. Precipitation reacts much faster than vegetation cover and is
therefore assumed to be in its equilibrium (quasi-steady-state
assumption), which depends on V,

Pi(V) ¼ P0i þ siBþ
XN
j¼1

kijV j, (2:4)

where P0i þ siB is the amount of precipitation if no vegetation
existed and kij is the sensitivity of the precipitation in location i
to the vegetation in location j. Therefore k is the parameter that
couples the locations to each other. Default parameter settings
are chosen in line with [27] as N = 4, τ = 1, sVi ¼ 0:02, α = 0.0011,
β = 28, δ = 9100, P1 = 60.6855, P0 = [− 50, 40, 210, 40], s = [1.7, 0.8,

0.2, 0.9], B = 100 and k ¼
243 30 50 50
135 24 15 15
72 12 75 10
18 18 10 25

2
664

3
775. A time step of
0.01 was used for integration.
This Sahara model is fitted to observations and is therefore

slightly more realistic than the meta-population model.

2.2.3. Gene regulatory network
Third, as an example of a non-gradient reactive system, we use a
simple network of gene regulations among five genes, described
by Chen et al. [18]. This model describes the concentration of five
molecules (e.g. gene or protein expressions),

dz1¼ 90jPj�1236þ240�120jPj
1þz3

þ1488z4
1þz4

�30jPjz1
� �

dtþsdW1,

dz2¼ 75jPj�150þ60�30jPj
1þz1

þ (240�120jPj)z3
1þz3

�60z2

� �

dtþsdW2,

dz3¼ �1056þ1488z4
1þz4

�60z3

� �
dtþsdW3,

dz4¼ �600þ1350z5
1þz5

�100z4

� �
dtþsdW4

and dz5¼ 108þ 160
1þz1

þ 40
1þz2

þ 1488
1þz4

�300z5

� �
dtþsdW5,

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;
(2:5)
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where zi is the concentration of molecule i and P is a scalar con-
trol parameter. The gene regulation growth rates are described
by the Michaelis–Menten equation and the degradation rates
are proportional to the concentration of the genes. There is a
stable equilibrium at �Z¼ ( �z1, �z2, �z3, �z4, �z5)¼ (1, 0, 1, 3, 2) and a tip-
ping point at P = 0. For our simulations, we use P = 0.35 and
σ = 0.2. A time step of 0.001 was used for integration.

This model is not based on observations, but it is tuned to
display dynamics not unlike real biomarker dynamics [18]. Fur-
thermore, it is a more complex model than the other two models.
In this way, our models have different levels of realism and
different levels of complexity.
l/rsif
J.R.Soc.Interface
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2.3. Perturbation experiments
To verify whether the direction with the highest autocorrelation
is also the direction in which perturbations recover slowest, we
performed perturbation experiments in the direction of the
different MAFs, using the deterministic models. We expect that
the speed of recovery of perturbations in the direction of the
MAF will be ordered according to the order of the MAFs. This
should be true for systems that return to their equilibrium in a
relatively linear way. However, when strong spiralling dynamics
occur, the system can move away from the direction of the MAF
after the perturbation and recovery rates may become different.
Therefore, we expect that the initial recovery rate is well ordered
according to the MAFs, and the later recovery rates are only well
ordered when the system recovers in a linear way. We capture
the initial recovery time by looking at the moment when the per-
turbation is at 10% of its recovery. In real-life applications, there
is often an interest in more than 10% recovery. For example, an
ecological system is normally not labelled as ‘recovered’ until it
is indistinguishable from the situation prior to the perturbation.
Therefore, recovery times are also calculated for 50% and 90%
recovery. For all perturbation experiments, perturbation size is
three times the standard deviation of the Gaussian white noise
process used for the simulations.

Last, to check if the first MAF really provides the direction of
slowest recovery, we did 1000 random perturbations for every
model and calculated the recovery times for every one of them
to assess if the perturbation on the first MAF was really the
perturbation that would lead to the longest recovery.
2.4. Performance of Min/Max autocorrelation factors
versus principal component analysis

We evaluated the effect of data length and resolution on the per-
formance of MAF and PCA. To test whether the time series is of
sufficient length, we performed a block bootstrap with increasing
block size. We started with a block size of 0.1% of the data size,
and then we randomly picked 100 blocks in the data. The blocks
could overlap. For every block, we calculated the first MAF and
first PC, resulting in a distribution based on 100 blocks, of which
we calculated the median and the 90% confidence interval (5%
and 95% boundary). Next, we increased the block size and
repeated the analysis. We repeated this until the block size was
10% of the data size. If the confidence interval converges to a
small value, we conclude that the data are of sufficient length.
This procedure can be done with any available dataset to evalu-
ate whether it is of sufficient length and quality for our analysis.

To examine the effect of data resolution, we again performed
a block bootstrap with blocks of size 1000 for different distances
between data points. We chose the blocks by starting at a random
point in the time series and then taking every nth point until the
box was full at 1000 points. We let n range from 1 to 1000. Again,
we used 100 boxes per n, and we calculated the median and the
90% confidence interval.
Furthermore, we tested the performance of MAF and PCA in
the case that noise is unequally distributed over the variables. For
this, we used the metapopulation model, with different noise
levels for each variable. We simulated all combinations of noise
levels, keeping the sum of the noise (

Pn
i¼1 sNi ) at a constant of

0.2. For every noise regime, we compared the similarity of the
obtained MAF and PCA with the true direction of slowest
recovery (see below).

2.5. Metric for comparing directions
In order to evaluate the performance of MAF and PCA, we com-
pared both of them with the true direction of slowest recovery.
We calculate the latter with the deterministic version of the
model (using 50% recovery). Then, we calculate the angle
between the first (MAF or PCA) component and the vector in
which the system shows slowest recovery when perturbed
along that vector with the formula

u ¼ cos�1 C†V
kCk kVk , (2:6)

where C is the calculated direction (first MAF or first PC) and V
is the real direction of slowest recovery. The † operator indicates
the dot product. Next, we use the following probability density
function that calculates the probability of finding an angle θ
when comparing two random vectors with each other:

h(u) ¼ 1ffiffiffiffi
p

p G(d=2)
G((d� 1)=2)

� ( sin u)d�2, (2:7)

where Γ is the Gamma function (a factorial function that can
handle non-integer numbers) and d is the dimension of the
input vectors [28].

We calculate the vector similarity as 1− p, where p is the prob-
ability of finding two random vectors that have an angle that is
equal to or smaller than the angle between the two vectors
(using equation (2.7)). This depends on both the angle of the
two vectors and the dimensionality of the space [28].
3. Results
3.1. Interpreting Min/Max autocorrelation factors

analysis
In this section, we will apply the MAF analysis to the three
models and discuss the interpretation of the results of a
MAF analysis. We start with the three-dimensional meta-
population model, since the low dimensions allow for clear
visualization.

First, we calculate the autocorrelation in all possible direc-
tions. Just like the two-dimensional example in figure 1, we
depict the autocorrelation for the different directions with a
colour gradient. In the two-dimensional example, we plotted
it on a circle, but in this three-dimensional case we need a
sphere to visualize all directions (figure 2b). It is important
to note that, just like the circle in figure 1b, only half of the
sphere is needed since the circle is symmetrical (e.g. autocor-
relation in direction [1 1 1] is the same as autocorrelation in
direction [− 1− 1− 1]). Therefore, we can look at the sphere
from any side. We choose to look at the side where Z > 0
(figure 2b), but any other angle would give exactly the
same result. We show how the MAF analysis accurately cap-
tures the direction of highest (blue X ) and lowest (red X )
autocorrelation in this case (figure 2b). Figure 2c,d indicates
how the autocorrelation differs in the two directions. Pertur-
bations in the direction of the first and last MAF show strong
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Figure 2. Direction of slow and fast recovery as detected by MAF. (a) Time series of the metapopulation model with three patches. (b) Autocorrelation for all
possible directions in the three-dimensional plane, for Z > 0. The blue X indicates the direction of the first MAF (slowest direction), the red X indicates the direction
of the last MAF (fastest direction). (c,d ) Lag-1 autocorrelation for the projected time series on MAF 1 (c) and MAF 3 (d ). (e,f ) Perturbation experiments on the first
and last MAF, showing that a perturbation on the first MAF results, as expected, in a slower recovery than a perturbation on the last MAF. The black lines indicate
90% recovery. (Online version in colour.)
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differences in recovery time (figure 2e,f ), where a pertur-
bation on the first MAF (figure 2e) lasts longer than a
perturbation on the last MAF (figure 2f ).

Next, we perform the MAF analysis for the other two
models. After obtaining the MAFs, we perturb the system
on the different MAFs. The expectation is that the pertur-
bation on the first MAF, the one with the highest
autocorrelation, will take the longest to recover and the recov-
ery time will increase as the MAF number increases, where
the shortest recovery time will be found for a perturbation
on the last MAF (figure 3). We see that for 10% recovery
the MAFs are indeed ordered to the recovery time of a pertur-
bation in their direction. For 50% recovery, this is true for the
meta-population and the Sahara model but not for the genetic
network; and for 90% recovery it is only true for the meta-
population model and not for the Sahara model or the genetic
network.

The time trajectories of the perturbations are plotted in
electronic supplementary material, figures S1 and S2. Here,
we see that for the Sahara model the recovery happens in a
gradual way, just as in figure 2e,f in the meta-population
model. However, in the genetic network, we see some fluctu-
ations before recovery occurs, a result of the complex
eigenvalues of the model, which explains why directional
autocorrelation does not reflect recovery times well.

Apart from the recovery times, we also calculate the MAF
eigenvalues that indicate how different the autocorrelations
on the different MAFs are from each other. Figure 4 shows
the MAF eigenvalues for every MAF for the meta-population
model (a), the Sahara model (b) and the genetic network (c).
For the meta-population model and the genetic network,
there is a clear increase in the MAF eigenvalue for increasing
MAF number, indicating a clear difference in autocorrelation
for the different directions. For the Sahara model, there is
hardly any difference in autocorrelation for MAF 2, 3 and
4. This is also reflected in the recovery times of perturbations
on MAFs 2, 3 and 4 (figure 3; electronic supplementary
material, figure S1).

Last, we perturbed the system in 1000 random directions
and calculated the recovery time for all of them. Here, we see
that for the non-spiralling systems (the meta-populated and
the Sahara model) the first MAF was the direction of slowest
recovery. For the spiralling genetic network, however, even
though a perturbation on the first MAF yielded a slower
recovery than a perturbation on the other MAFs, it was not
the slowest direction of the system (electronic supplementary
material, figures S3–S5). This shows that, for this model, the
direction of maximum autocorrelation is not representative
for the direction of slowest recovery. This model is a reactive
model [29], where perturbations exist that first grow in ampli-
tude before they return to their equilibrium. These directions
affect the MAF analysis. The other two models are not
reactive (electronic supplementary material, page 10).

3.2. Effect of time-series length
We evaluate the effect of the length of the time series on the
robustness of the results by performing our data suitability
test, which consists of a block bootstrap with increasing
block size. We find that for all our models there is clear con-
vergence for the first MAF and the first PCA, indicating that
the data are suitable for the analysis (figure 5a,b for the meta-
population model and electronic supplementary material,
figures S6 and S7 for the other two models). MAF and PCA
both need about 60 000 time points for the meta-population
and Sahara model and 20 000 time points for the genetic net-
work before convergence of the 90% confidence interval
is reached.

3.3. Effect of data resolution
To evaluate the effect of data resolution, we perform the block
bootstrap for different data resolutions (figure 5c,d for the
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meta-population model and electronic supplementary material,
figures S6 and S7 for the other two models). The first striking
observation is that a sampling distance of 1 does not yield the
smallest confidence interval, indicating that for both methods
it is possible that the data are over-sampled, in which case redu-
cing the amount of data could improve the result. Second, for
increasing distance between points, MAF results become
inaccurate, whereas data resolution does not affect PCA.
3.4. Effect of noise distribution over variables
In our previous analysis, we used Gaussian additive white
noise, which is the same for all variables. To evaluate the
effect of different noise types, we experiment with differently
distributed noise over the different variables. For all analyses,
we keep the sum of the noise at 0.2 (

P
i dNi ¼ 0:2).

Figure 6 shows the performance of MAF and PCA for
different noise regimes. A location in the plot represents the
noise distribution over the three variables and the colour
scale indicates the performance. Performance is measured
as the similarity between the MAF/PCA direction and the
direction of slowest recovery. For instance, a similarity of
0.8 means that the probability of finding two random vectors
that have an angle that is smaller than the angle between the
two vectors is 0.2. For this model, the true direction of slowest
recovery is on the vector [0.68 0.52 0.52]. If the result of
PCA and MAF point in the direction of only two variables,
such as [0:7 0:7 0], our similarity measure yields a score
of 0.92. Therefore, similarity values lower than 0.95 are not
very meaningful. We consider the performance of the
method to be ‘reasonable’ when the similarity between the
two vectors is higher than 0.95 and ’good’ when similarity
is higher than 0.99 (see contours).

Overall, under most noise regimes, MAF performs better
than PCA, as indicated by a larger area within the solid and
the dotted black lines. Only when noise is low on one
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variable, and relatively high in the two other variables, does
PCA outperform MAF. The reason that PCA works better in
that case is that the first PC will point in the direction of the
two variables with noise, and this will yield a high similarity
score. The same happens for MAF when there is noise on
only one variable, in which case the first MAF points to the
two variables without noise. The figures show that PCA is
only truly meaningful when the noise level is the same for
all the involved variables. MAF is a bit more robust and,
even when noise levels vary slightly, the method maintains
its high accuracy. However, both method fail to obtain the
direction of slowest recovery when there is a large difference
in noise levels for the different variables.

If the noise becomes larger, the results are not affected
(electronic supplementary material, figure S8), assuming
that the system remains in the area around its equilibrium.
For shorter time series, the accuracy of both methods (MAF
and PCA) is reduced (electronic supplementary material,
figure S9). The performance of MAF is more affected by
data size than the performance of PCA.
20190629
4. Discussion and conclusion
Our work reveals new ways in which multivariate time series
may bemined to detect the direction of lowest resilience in com-
plex systems. Sincewe are living in a timewhenmore andmore
high-density data are becoming available [30], new methods to
use these data to their full potential are a welcome expansion
of the toolbox to analyse complex systems. Our method makes
use of the temporal behaviour of the system on small time
scales, providing information that is hard to extract from the
data by more traditional statistical methods. This also means
that the input data have to be sampled at a time interval that is
sufficiently small. What exactly is ‘sufficiently small’ depends
on the time scale of the dynamics of the system. For instance,
brain activity should be measured at much smaller time steps
than tree cover. It will typically be difficult to decide a priori
what sampling frequency and time-series length are appropri-
ate. However, a simple way to test whether or not a particular
time series is suitable for the proposed analysis is to run the
analyses for different time-series lengths (see Methods, figure 5
and electronic supplementary material, figures S6 and S7).
If convergence is reached, and the confidence interval is small,
the time series can be considered to be of sufficient length for
the proposed analysis.

We showed that both high autocorrelation and high
variance in a particular direction in multivariate time series
can act as a pointer to the dominant slow direction of a
system, provided that the system is not highly reactive and
has no strong oscillating dynamics. Importantly, both methods
have advantages and disadvantages, so it depends on the
available data which method is expected to be most reliable.
In one-dimensional systems, autocorrelation is found to be a
more robust indicator of resilience than variance [31]. Also in
multiple dimensions, we show that autocorrelation outper-
forms variance when noise levels vary for different variables
(figure 6). Intuitively this makes sense, since all variance-
based measures such as PCA, covariance and standard devi-
ation are heavily influenced by noise levels. Still, MAF may
also lose accuracy when noise only affects a subset of the vari-
ables (figure 6). Furthermore, if there is no noise in the slowest
direction (i.e. the dominant eigenvector), resilience indicators
can miss signals of slow dynamics [32]. Thus, in general, auto-
correlation seems more robust than variance. However, the
MAF analysis requires a high data resolution to capture the
slow dynamics. Resolution is not an issue for PCA, which
does not take the timing of the data into account. In conclusion,
if the measured variables are known to be subject to different
noise levels, MAF should always be preferred. If, however,
data are too sparse to get a reliable estimate of a direction
with high autocorrelation, PCA might be a good alternative.

There are several caveats when it comes to interpreting the
results of our method. First of all, the information we obtain
depends on how large the natural fluctuations are (or the
noise is). We can only reliably estimate the speed of
the system for the part of the state space that is visited
by the system. We show that, under some conditions, the
local information about slow and fast recovery may be extra-
polated somewhat outside this range. However, in real
systems, it will typically be impossible to know whether or
not this works as we lack complete insight into the properties
that shape the dynamics throughout the state space. Another
fundamental limitation is the assumption that the system has
a stable point attractor. For systems that show oscillating, reac-
tive or chaotic behaviour, the method is not applicable, and
more generally the same is true for systems that are far from
equilibrium. Also, nonlinear systems or reactive systems often
display spiralling dynamics, even if the attractors are stable
points (e.g. our gene regulatory network). For these types of
systems, PCA will still find a direction of high variance and
MAF will still find a direction of high autocorrelation, but
these directions do not necessarily correspond to the direction
of longest recovery and thus the engineering resilience of the
system in that direction. Whether or not a system is expected
to fall into this category can be tested based on the time
series of the system with an estimation of the ‘worst-case reac-
tivity’ of a system [33]. Also, for systems that have instabilities
and that could leave their equilibrium, the direction of MAF or
PCA might still point to the direction in which the system will
lose its stability. We have deliberately limited ourselves to
detecting the mix of perturbations from which the system
recovers most slowly. However, the direction of lowest resili-
ence may in some systems also be the direction in which
compound perturbations may most easily trigger a critical
transition into a new state [34].

Despite these limitations, MAF and PCA offer exciting
opportunities to start probing the resilience of multivariate
complex systems in novel ways. Our approach builds on
the influential work on detecting instabilities based on the
phenomenon of critical slowing down in the vicinity of tip-
ping points. Clearly, the phenomena we describe are just
the tip of the iceberg when it comes to probing resilience in
real systems. Our results show that creative use of known
computational tools allows to make the theory of resilience
indicators applicable for multivariate systems. The patterns
we find suggest ways to move forward to produce theoretical
frameworks that help unravel resilience in the wide range of
high-dimensional systems on which humanity depends.
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